A Direct Matrix Method for Computing Analytical Jacobians of Discretized Nonlinear Integro-differential Equations
نویسنده
چکیده
In this pedagogical article, we present a simple direct matrix method for analytically computing the Jacobian of nonlinear algebraic equations that arise from the discretization of nonlinear integro-differential equations. The method is based on a formulation of the discretized equations in vector form using only matrix-vector products and componentwise operations. By applying simple matrix-based differentiation rules, the matrix form of the analytical Jacobian can be calculated with little more difficulty than that required when computing derivatives in single-variable calculus. After describing the direct matrix method, we present numerical experiments demonstrating the computational performance of the method, discuss its connection to the Newton-Kantorovich method, and apply it to illustrative 1D and 2D example problems. MATLAB code is provided to demonstrate the low code complexity required by the method.
منابع مشابه
A Simple Direct Matrix Approach for Computing Jacobians of Nonlinear Discretized Integro-differential Equations
In this article, we present a simple direct matrix method for analytically computing the Jacobian of nonlinear algebraic equations that arise from the discretization of nonlinear integrodifferential equations. This method is based on a formulation of the discretized equations in vector form using only matrix-vector products and component-wise operations. By applying simple matrixbased different...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملThe Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009